3.2557 \(\int \frac{5-x}{(3+2 x)^{7/2} (2+5 x+3 x^2)} \, dx\)

Optimal. Leaf size=81 \[ -\frac{1194}{125 \sqrt{2 x+3}}-\frac{66}{25 (2 x+3)^{3/2}}-\frac{26}{25 (2 x+3)^{5/2}}+12 \tanh ^{-1}\left (\sqrt{2 x+3}\right )-\frac{306}{125} \sqrt{\frac{3}{5}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{2 x+3}\right ) \]

[Out]

-26/(25*(3 + 2*x)^(5/2)) - 66/(25*(3 + 2*x)^(3/2)) - 1194/(125*Sqrt[3 + 2*x]) + 12*ArcTanh[Sqrt[3 + 2*x]] - (3
06*Sqrt[3/5]*ArcTanh[Sqrt[3/5]*Sqrt[3 + 2*x]])/125

________________________________________________________________________________________

Rubi [A]  time = 0.0784931, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.148, Rules used = {828, 826, 1166, 207} \[ -\frac{1194}{125 \sqrt{2 x+3}}-\frac{66}{25 (2 x+3)^{3/2}}-\frac{26}{25 (2 x+3)^{5/2}}+12 \tanh ^{-1}\left (\sqrt{2 x+3}\right )-\frac{306}{125} \sqrt{\frac{3}{5}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{2 x+3}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(5 - x)/((3 + 2*x)^(7/2)*(2 + 5*x + 3*x^2)),x]

[Out]

-26/(25*(3 + 2*x)^(5/2)) - 66/(25*(3 + 2*x)^(3/2)) - 1194/(125*Sqrt[3 + 2*x]) + 12*ArcTanh[Sqrt[3 + 2*x]] - (3
06*Sqrt[3/5]*ArcTanh[Sqrt[3/5]*Sqrt[3 + 2*x]])/125

Rule 828

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[((
e*f - d*g)*(d + e*x)^(m + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/(c*d^2 - b*d*e + a*e^2), Int[((d
+ e*x)^(m + 1)*Simp[c*d*f - f*b*e + a*e*g - c*(e*f - d*g)*x, x])/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c,
d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && FractionQ[m] && LtQ[m, -1]

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{5-x}{(3+2 x)^{7/2} \left (2+5 x+3 x^2\right )} \, dx &=-\frac{26}{25 (3+2 x)^{5/2}}+\frac{1}{5} \int \frac{-9-39 x}{(3+2 x)^{5/2} \left (2+5 x+3 x^2\right )} \, dx\\ &=-\frac{26}{25 (3+2 x)^{5/2}}-\frac{66}{25 (3+2 x)^{3/2}}+\frac{1}{25} \int \frac{-147-297 x}{(3+2 x)^{3/2} \left (2+5 x+3 x^2\right )} \, dx\\ &=-\frac{26}{25 (3+2 x)^{5/2}}-\frac{66}{25 (3+2 x)^{3/2}}-\frac{1194}{125 \sqrt{3+2 x}}+\frac{1}{125} \int \frac{-1041-1791 x}{\sqrt{3+2 x} \left (2+5 x+3 x^2\right )} \, dx\\ &=-\frac{26}{25 (3+2 x)^{5/2}}-\frac{66}{25 (3+2 x)^{3/2}}-\frac{1194}{125 \sqrt{3+2 x}}+\frac{2}{125} \operatorname{Subst}\left (\int \frac{3291-1791 x^2}{5-8 x^2+3 x^4} \, dx,x,\sqrt{3+2 x}\right )\\ &=-\frac{26}{25 (3+2 x)^{5/2}}-\frac{66}{25 (3+2 x)^{3/2}}-\frac{1194}{125 \sqrt{3+2 x}}+\frac{918}{125} \operatorname{Subst}\left (\int \frac{1}{-5+3 x^2} \, dx,x,\sqrt{3+2 x}\right )-36 \operatorname{Subst}\left (\int \frac{1}{-3+3 x^2} \, dx,x,\sqrt{3+2 x}\right )\\ &=-\frac{26}{25 (3+2 x)^{5/2}}-\frac{66}{25 (3+2 x)^{3/2}}-\frac{1194}{125 \sqrt{3+2 x}}+12 \tanh ^{-1}\left (\sqrt{3+2 x}\right )-\frac{306}{125} \sqrt{\frac{3}{5}} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{3+2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0997902, size = 63, normalized size = 0.78 \[ \frac{2}{625} \left (-\frac{5 \left (2388 x^2+7494 x+5933\right )}{(2 x+3)^{5/2}}+3750 \tanh ^{-1}\left (\sqrt{2 x+3}\right )-153 \sqrt{15} \tanh ^{-1}\left (\sqrt{\frac{3}{5}} \sqrt{2 x+3}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(5 - x)/((3 + 2*x)^(7/2)*(2 + 5*x + 3*x^2)),x]

[Out]

(2*((-5*(5933 + 7494*x + 2388*x^2))/(3 + 2*x)^(5/2) + 3750*ArcTanh[Sqrt[3 + 2*x]] - 153*Sqrt[15]*ArcTanh[Sqrt[
3/5]*Sqrt[3 + 2*x]]))/625

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 71, normalized size = 0.9 \begin{align*} -{\frac{26}{25} \left ( 3+2\,x \right ) ^{-{\frac{5}{2}}}}-{\frac{66}{25} \left ( 3+2\,x \right ) ^{-{\frac{3}{2}}}}-{\frac{1194}{125}{\frac{1}{\sqrt{3+2\,x}}}}-{\frac{306\,\sqrt{15}}{625}{\it Artanh} \left ({\frac{\sqrt{15}}{5}\sqrt{3+2\,x}} \right ) }+6\,\ln \left ( 1+\sqrt{3+2\,x} \right ) -6\,\ln \left ( -1+\sqrt{3+2\,x} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5-x)/(3+2*x)^(7/2)/(3*x^2+5*x+2),x)

[Out]

-26/25/(3+2*x)^(5/2)-66/25/(3+2*x)^(3/2)-1194/125/(3+2*x)^(1/2)-306/625*arctanh(1/5*15^(1/2)*(3+2*x)^(1/2))*15
^(1/2)+6*ln(1+(3+2*x)^(1/2))-6*ln(-1+(3+2*x)^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.42293, size = 113, normalized size = 1.4 \begin{align*} \frac{153}{625} \, \sqrt{15} \log \left (-\frac{\sqrt{15} - 3 \, \sqrt{2 \, x + 3}}{\sqrt{15} + 3 \, \sqrt{2 \, x + 3}}\right ) - \frac{2 \,{\left (597 \,{\left (2 \, x + 3\right )}^{2} + 330 \, x + 560\right )}}{125 \,{\left (2 \, x + 3\right )}^{\frac{5}{2}}} + 6 \, \log \left (\sqrt{2 \, x + 3} + 1\right ) - 6 \, \log \left (\sqrt{2 \, x + 3} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^(7/2)/(3*x^2+5*x+2),x, algorithm="maxima")

[Out]

153/625*sqrt(15)*log(-(sqrt(15) - 3*sqrt(2*x + 3))/(sqrt(15) + 3*sqrt(2*x + 3))) - 2/125*(597*(2*x + 3)^2 + 33
0*x + 560)/(2*x + 3)^(5/2) + 6*log(sqrt(2*x + 3) + 1) - 6*log(sqrt(2*x + 3) - 1)

________________________________________________________________________________________

Fricas [B]  time = 1.54128, size = 417, normalized size = 5.15 \begin{align*} \frac{153 \, \sqrt{5} \sqrt{3}{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )} \log \left (-\frac{\sqrt{5} \sqrt{3} \sqrt{2 \, x + 3} - 3 \, x - 7}{3 \, x + 2}\right ) + 3750 \,{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )} \log \left (\sqrt{2 \, x + 3} + 1\right ) - 3750 \,{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )} \log \left (\sqrt{2 \, x + 3} - 1\right ) - 10 \,{\left (2388 \, x^{2} + 7494 \, x + 5933\right )} \sqrt{2 \, x + 3}}{625 \,{\left (8 \, x^{3} + 36 \, x^{2} + 54 \, x + 27\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^(7/2)/(3*x^2+5*x+2),x, algorithm="fricas")

[Out]

1/625*(153*sqrt(5)*sqrt(3)*(8*x^3 + 36*x^2 + 54*x + 27)*log(-(sqrt(5)*sqrt(3)*sqrt(2*x + 3) - 3*x - 7)/(3*x +
2)) + 3750*(8*x^3 + 36*x^2 + 54*x + 27)*log(sqrt(2*x + 3) + 1) - 3750*(8*x^3 + 36*x^2 + 54*x + 27)*log(sqrt(2*
x + 3) - 1) - 10*(2388*x^2 + 7494*x + 5933)*sqrt(2*x + 3))/(8*x^3 + 36*x^2 + 54*x + 27)

________________________________________________________________________________________

Sympy [A]  time = 49.5405, size = 126, normalized size = 1.56 \begin{align*} \frac{918 \left (\begin{cases} - \frac{\sqrt{15} \operatorname{acoth}{\left (\frac{\sqrt{15} \sqrt{2 x + 3}}{5} \right )}}{15} & \text{for}\: 2 x + 3 > \frac{5}{3} \\- \frac{\sqrt{15} \operatorname{atanh}{\left (\frac{\sqrt{15} \sqrt{2 x + 3}}{5} \right )}}{15} & \text{for}\: 2 x + 3 < \frac{5}{3} \end{cases}\right )}{125} - 6 \log{\left (\sqrt{2 x + 3} - 1 \right )} + 6 \log{\left (\sqrt{2 x + 3} + 1 \right )} - \frac{1194}{125 \sqrt{2 x + 3}} - \frac{66}{25 \left (2 x + 3\right )^{\frac{3}{2}}} - \frac{26}{25 \left (2 x + 3\right )^{\frac{5}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)**(7/2)/(3*x**2+5*x+2),x)

[Out]

918*Piecewise((-sqrt(15)*acoth(sqrt(15)*sqrt(2*x + 3)/5)/15, 2*x + 3 > 5/3), (-sqrt(15)*atanh(sqrt(15)*sqrt(2*
x + 3)/5)/15, 2*x + 3 < 5/3))/125 - 6*log(sqrt(2*x + 3) - 1) + 6*log(sqrt(2*x + 3) + 1) - 1194/(125*sqrt(2*x +
 3)) - 66/(25*(2*x + 3)**(3/2)) - 26/(25*(2*x + 3)**(5/2))

________________________________________________________________________________________

Giac [A]  time = 1.0917, size = 119, normalized size = 1.47 \begin{align*} \frac{153}{625} \, \sqrt{15} \log \left (\frac{{\left | -2 \, \sqrt{15} + 6 \, \sqrt{2 \, x + 3} \right |}}{2 \,{\left (\sqrt{15} + 3 \, \sqrt{2 \, x + 3}\right )}}\right ) - \frac{2 \,{\left (597 \,{\left (2 \, x + 3\right )}^{2} + 330 \, x + 560\right )}}{125 \,{\left (2 \, x + 3\right )}^{\frac{5}{2}}} + 6 \, \log \left (\sqrt{2 \, x + 3} + 1\right ) - 6 \, \log \left ({\left | \sqrt{2 \, x + 3} - 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((5-x)/(3+2*x)^(7/2)/(3*x^2+5*x+2),x, algorithm="giac")

[Out]

153/625*sqrt(15)*log(1/2*abs(-2*sqrt(15) + 6*sqrt(2*x + 3))/(sqrt(15) + 3*sqrt(2*x + 3))) - 2/125*(597*(2*x +
3)^2 + 330*x + 560)/(2*x + 3)^(5/2) + 6*log(sqrt(2*x + 3) + 1) - 6*log(abs(sqrt(2*x + 3) - 1))